

SMB Computing Whitepaper Q3 - 2023

The Hidden Dangers of
Open REST APIs in
Reactive Web Apps

Unseen Threats in Your Reac�ve Web Landscape

Writen and provided by

Overview
Diving deep into the world of reactive web applications, we've

identified key areas that are paramount to understanding the
delicate balance between innovation and liability. These core topics
not only shed light on the foundational principles of web application
development and the role of REST APIs but also emphasize the vital
importance of securing our digital ecosystems in today's
interconnected world. Join us as we navigate these topics, providing
insights, case studies, and expert opinions on the challenges and
solutions intertwined in the realm of reactive web apps.

Core Topics
• Understanding REST APIs:

o Dive into the essentials of REST APIs.
o How they empower reactive web applications to be more

dynamic and responsive.

• Modern Digital Security Imperatives:
o Why the digital era has ushered in a new set of security

challenges.
o The increased stakes for businesses and users alike.

• Open REST APIs: The Silent Gateway:
o Why having open REST calls might be akin to leaving your digital

door unlocked.
o Real-world examples of businesses hurt by overlooked

vulnerabilities.

• Balancing Reactivity and Security:
o How to reap the benefits of reactive web apps without

compromising security.
o Insights into potential trade-offs and decision-making criteria.

• Securing Your Application Landscape:
o Proactive steps and strategies to mitigate the risks associated with

open REST APIs.
o Highlighting the importance of regular audits, patches, and

updates.

Introduction
ReactJS and Low Code Reactive Web applications are heralding a new

era in user interactivity for SMB web applications. The rise of these
technologies can be attributed to their seamless integration, real-time
responsiveness, and a user-centric approach to design and functionality.
However, the dynamic nature of React requires data retrieval in real-time. This
means that the platform must generate REST calls for every conceivable action,
transforming each of these actions into potential points of exposure. Among
these are actions that have direct interaction with the database, which, if left
unsecured, could lead to data breaches or unauthorized data manipulation.
Such vulnerabilities could not only jeopardize data integrity but could also pose
significant threats to the survival and reputation of a business.

Understanding REST APIs in Reactive Web
Applications

Definition of REST API
REST, which stands for Representational State Transfer, is an

architectural style used for web development. A REST API allows
different software systems to communicate with each other over the
internet using standard methods like GET, POST, PUT, and DELETE. It acts
as a global set of rules and conventions for building and interacting with
web services.

REST is crucial for real-time web applications
Real-time web applications thrive on instantaneity. Users expect

data updates and responses without noticeable lag. REST APIs facilitate
this by enabling efficient data retrieval and updates, ensuring the front-
end UI remains responsive and data-rich. This real-time flow of data
helps in providing a dynamic user experience, from live chats to real-time
gaming or stock market dashboards.

ReactJS, Low-Code Platforms, and REST APIs
ReactJS is a JavaScript library focused on building dynamic user

interfaces. OutSystems Reactive Web, on the other hand, is a platform
that helps in developing responsive applications quickly, utilizing ReactJS.
Both leverage REST APIs to fetch, display, and manipulate data in real-
time. The seamless integration of REST with these platforms ensures that
the data layer communicates effectively with the user interface, bringing
agility and responsive interactions with the application.

The Importance of Robust Security in
Today's Digital Landscape

Growing trends of cyber threats and data
breaches

The digital age, while bringing convenience and innovation, has
also witnessed a surge in cyber threats. Phishing attacks, ransomware,
malware, and data breaches have become increasingly sophisticated and
frequent. Every day, companies, irrespective of their size or industry, are
targeted, leading to loss of data, finances, and reputation.

Potential repercussions for businesses with
inadequate security measures

Businesses that overlook security measures are gambling against
time. The implications of a security breach can be catastrophic. Financial
losses aside, businesses can face legal actions, penalties, and a significant
erosion of customer trust. A tarnished brand image can take years to
recover, and in some cases, businesses never bounce back from a major
breach. Without proper security in place, it is a matter of when, not if, a
breach will occur.

The modern user values privacy and data
protection

Today's users are more informed and conscious about their online
privacy than ever before. They're aware of the risks associated with
sharing personal data and are increasingly skeptical of platforms that
don't prioritize security. A transparent approach to data protection,
coupled with robust security measures, is not just a technical necessity
but also a brand's statement about valuing its users. Brands that
prioritize security are often rewarded with loyalty, while those that don't
face skepticism and attrition.

Exposure Points: Identifying Where Things
Can Go Wrong

Detailed look into how open REST APIs can be
exploited

Open REST APIs, while providing seamless integration and dynamic
functionality, can become a gateway for malicious activities if not
properly secured. Exploiters can take advantage of poorly authenticated
APIs, weak encryption, or APIs that have overly broad access rights. They
might invoke unintended methods or access data they shouldn't, leading
to unauthorized data retrieval or even system control.

Understanding the potential risks of direct
database manipulation through insecure APIs

When an API is directly tied to a database without proper security
layers, it becomes a ripe target for exploitation. Malicious actors can
perform actions to gain unauthorized access to the database, internal
business logic, and private customer data. This not only risks theft but
can also data corruption, manipulation, or deletion, leading to system
malfunctions and, potentially, significant financial repercussions.

Real-world situations highlighting the
vulnerabilities

A notable example involves a major tech company that had a
misconfigured REST API, which exposed the personal information of
millions of its users. The vulnerability allowed attackers to access user
IDs, names, and email addresses. Such breaches don't just result in
financial penalties for the company but also severely tarnish its
reputation, eroding user trust in the brand.

The Trade-off: Balancing Functionality with
Security

The challenge of maintaining dynamic
responsiveness while ensuring security

In the race to deliver real-time updates and interactive
experiences, developers might sometimes sideline security, exposing the
application to threats. However, with today's tools and practices, it's
entirely feasible to maintain a highly responsive application that is also
secure. The challenge lies in implementing proper security protocols
without adding significant latency to the application's response time, or
costly delays to development.

Addressing the misconception that enhanced
security means compromised functionality

There's a prevailing myth that adding more security layers to an
application will make it slower or less user-friendly. While certain security
measures can add minimal latency, the compromise on speed is often
negligible, especially when weighed against the risks of a potential
breach. In fact, with modern security solutions, enhanced security can
often lead to better performance by optimizing data flows, preventing
unnecessary server calls, and reducing vulnerabilities that could cause
system compromise.

Common Mistakes Developers Make with
REST APIs

Overlooking API endpoints that shouldn't be
exposed

Often in the hustle of development cycles, developers might
inadvertently create some API endpoints that become exposed,
especially during the development or testing phases. Simply by using a
server action in any Reactive Web page or action, an exposed REST is
automatically generated within OutSystems. These overlooked
endpoints become vulnerabilities and backdoors for attackers to exploit.
It’s essential for developers to ensure that only necessary and intended
endpoints are publicly accessible, and any debug or test endpoints are
securely shut down or hidden in production environments.

Not using authentication or authorization
where needed

One of the gravest mistakes is neglecting the importance of
authentication and authorization. While some APIs might be meant for
public access, many need strict access controls. Ignoring these controls
can mean anyone with the API's endpoint can fetch, modify, or even
delete data. Secure tokens, OAuth, and other authentication methods
should be implemented to ensure only authorized personnel can access
or modify data.

Proper CRUD operations become extremely important in relation
to React and REST APIs, as you must properly verify that the user has the
authorization to make changes not only to the record in question, but
the specific fields of that record.

One example of this is a ticketing system, where users can view
and update the ticket with their own notes. The request must be able to
trigger an edit to the ticket record to update the most recent note and
time changed, etc. However, you do not want to allow them to edit the
other details such as priority, assigned to, etc. Due to the nature of how
these REST APIs are automatically generated, by default all fields become
exposed to manipulation with no verification.

Ignoring rate limiting and leaving APIs open to
DDoS attacks

Without rate limiting, APIs are vulnerable to DDoS (Distributed
Denial of Service) attacks where an attacker sends a flood of requests,
overwhelming the server. This can slow down the application or even
crash it, affecting service availability. Rate limiting ensures that a user or
system can only make a specific number of requests within a given
timeframe, thus offering protection against such attacks. This has the
added benefit improving your application responsiveness in general by
preventing problems before they begin.

Securing Your Applications: Best Practices
and Solutions

Incorporating secure coding practices
Secure coding is the foundation of application security. Developers

should be trained to write code that is not just functional but also secure
against common vulnerabilities. This involves validating inputs, using
prepared statements and stored procedures, and always considering the
security implications of each code segment from every angle.

Regularly auditing and testing API endpoints
Security is not a one-time activity. Regular audits and penetration

testing of endpoints can help identify vulnerabilities before they are
exploited. Tools like Postman or Swagger can assist developers in testing
endpoints, and professional penetration testers can simulate real-world
attack scenarios to gauge security robustness.

Implementing robust authentication and
authorization mechanisms

Moving beyond simple username-password combinations,
developers should consider multi-factor authentication, OAuth, and role-
based access controls. These mechanisms ensure that users are who

they say they are and can only access data and functionalities they're
permitted to.

The value of investing in professional tools and
services to safeguard your applications

While in-house measures are crucial, there's undeniable value in
leveraging specialized tools and services designed for application
security. These tools, backed by continuous research and updates, offer a
level of security hard to achieve with just in-house resources. Investing in
them not only bolsters your application's defense but also sends a strong
signal to users about your commitment to their data's safety.

RAD Manage's Role in Safeguarding Your Web
Applications

With expertise in both ReactJS and OutSystems Reactive Web platforms,
RAD Manage brings to the table:

• Comprehensive Audits: Our team can routinely check for vulnerabilities,
ensuring that your REST APIs are both functional and secure.

• Customized Solutions: Recognizing that each business has unique needs,
RAD Manage offers tailored solutions that align with your application’s
objectives.

• Education and Training: Beyond just solutions, RAD Manage believes in
empowering its clients. Our training keeps your in-house teams updated
on the latest best practices.

• Continuous Support: In the ever-changing world of cyber threats, RAD
Manage offers continuous support services to ensure that your
applications remain impervious to emerging vulnerabilities and system
errors.

By entrusting their platform and application management to RAD Manage,
businesses not only help protect their data but also contribute to an
uninterrupted, secure, and superior user experience.

Are you ready to secure your low-code factory? Let RAD Manage lead
the way, ensuring your business experiences a smooth and beneficial
shi�. Reach out to us today!

RAD Manage LLC
htps://www.radmanage.com/

https://www.radmanage.com/

